Snowy dirtballs streak across sky in dazzling meteor shower

(THIS ARTICLE IS COURTESY OF THE ST. GEORGE NEWS)

 

Snowy dirtballs streak across sky in dazzling meteor shower

Composite image, St. George News

ST. GEORGE — Earth’s ancient relative, the Smith-Tuttle comet, is set to be the headliner for three nights in August, producing a brilliant light show as fragments of the 4-billion-year-old snowy dirtball streak across the skies during one of the most active meteor showers of the year.

The Perseid meteor shower will make its peak three-night appearance from Aug. 11-13, and is known to be a rich, steady meteor shower that sends 60-70 meteors slamming into the Earth’s atmosphere at more than 130,000 mph every hour. This year’s meteor shower event will be make even more spectacular by the “slender waxing crescent moon,” according to EarthSky’s 2018 Meteor Shower Guide. 

Star map depicting outline of constellations, including Perseus, where the Perseid meteor shower originates | Image courtesy of EarthSky, St. George News

Meteors are small fragments of cosmic debris entering the earth’s atmosphere at extremely high speed. They are caused by the copious amounts of particles produced each time a comet swings around the sun and eventually spread out along the entire orbit of the comet to form a meteoroid stream.

If the Earth’s orbit intersects with the comet’s orbit, as it does with the Swift-Tuttle Comet, then it passes through that stream, which produces a meteor shower. If that intersection occurs at roughly the same time each year, then it becomes an annual shower, according to the American Meteor Society.

Swift-Tuttle has an eccentric, oblong orbit around the sun that takes 133 years. The comet’s orbit takes it outside the orbit of Pluto when farthest from the sun, and inside the Earth’s orbit when closest to the sun, releasing particles of ice and dust that become part of the Perseid meteor shower.

Perseid showers last for weeks instead of days and have been streaking across the sky since July 17, and while they are heaviest during the three-day period beginning Saturday, they will continue for at least 10 days after.

The fast, bright meteors appear in all parts of the sky, roughly 50 to 75 miles above the earth’s surface and leave continual trains, which is the persistent glow caused by the luminous interplanetary rock and dust left in the wake of the meteoroid, and often remain long after the light trail has dissipated.

These meteors, which can reach temperatures of more than 3,000 degrees Fahrenheit, start from northerly latitudes during mid-to-late evening and tend to strengthen in number as the night continues, typically producing the greatest number of showers in the hours just before dawn, which is also moonless and makes them easier to see against the black backdrop.

Because meteor shower particles are all traveling in parallel paths at the same velocity, they appear to radiate from a single point in the sky, similar to railroad tracks converging to a single point as they vanish beyond the horizon. The Perseid shower originates from a point in front of the constellation Perseus, which ranks 24 on the list of largest constellations and is visible from August to March in the Northern Hemisphere.

Here are Perseid meteor shower viewing tips:

  • An open sky is essential as these meteors streak across the sky in many different directions and in front of a number of constellations.
  • Getting as far away from city lights will provide the best view, and the best time to watch the showers is between midnight and dawn.
  • Provide at least an hour to sky watch, as it can take the eyes up to 20 minutes to adapt to the darkness of night.
  • Put away the telescope or binoculars, as using either one reduces the amount of sky you can see at one time, and lowers the odds that you’ll see a meteor.
  • Let your eyes relax and don’t look in any one specific spot. Relaxed eyes will quickly catch any movement in the sky and you’ll be able to spot more meteors.
  • Be sure to dress appropriately – wear clothing appropriate for cold overnight temperatures.
  • Bring something comfortable on which to sit or lie. A reclining chair or pad will make it far more comfortable to keep your gaze on the night sky.
  • Avoid looking at your cell phone or any other light, as both destroy night vision.

To mix things up a bit, the Delta Aquariids meteor shower, which peaked July 27, the same night as the century’s longest lunar eclipse, is still showering icy space dust across the sky and is running simultaneously with the Perseid’s.

Email: [email protected]

Twitter: @STGnews

Copyright St. George News, SaintGeorgeUtah.com LLC, 2018, all rights reserved.

Asteroid on Course to Earth Was Spotted Just Hours Before It Hit The Atmosphere

(THIS ARTICLE IS COURTESY OF THE WASHINGTON POST)

 

Asteroid on Course to Earth Was Spotted Just Hours Before It Hit The Atmosphere

Surprise!

ALEX HORTON, THE WASHINGTON POST
5 JUN 2018

Witnesses reported a fireball streaking across the sky above Botswana on Saturday night.

The asteroid hurtling toward Earth at 10 miles (16 km) a second looked like it could be the harbinger of catastrophe. A webcam in a rural area west of Johannesburg captured it, showing a luminous orb igniting the sky in a bright flash.

NASA had only discovered the asteroid on Saturday and determined it was on a collision course for the planet, charted for entry in a vast expanse from Southern Africa and across the Indian Ocean to New Guinea and given the name 2018 LA.

The reality of the asteroid’s fiery end was less dramatic than the video shows. The asteroid was estimated at just six feet (1.8 metres) across, otherwise known as boulder-sized, NASA’s Jet Propulsion Laboratory said in a statement.

It burned up “several miles” above the Earth’s surface.

NASA and space enthusiasts do not get many opportunities like this. Asteroid 2018 LA was only the third asteroid discovered on an impact trajectory, the agency said, and just the second time a high probability of impact was determined ahead of time.

The last predicted impact was asteroid 2014 AA, and it too was discovered only hours before it entered the atmosphere over the Atlantic Ocean on New Year’s Day in 2014, NASA said.

“[T]his real-world event allows us to exercise our capabilities and gives some confidence our impact prediction models are adequate to respond to the potential impact of a larger object,” said Lindley Johnson, an official at NASA’s Planetary Defense team, which tracks and warns of asteroids that may pose a threat to the planet.

KFDLE7J3A4ZMJHHOSXVO67EJUAThe discovery observations of Asteroid 2018 LA. (NASA/JPL-Caltech/CSS-Univ. of Arizona)

Asteroids are small remnants of violent collisions in the solar system’s history and formed around 4.5 billion years ago.

They are typically composed of rock-forming minerals like olivine and pyroxene but often contain iron and nickel, NASA said.

The Asteroid Belt between Mars and Jupiter contains hundreds of thousands of asteroids more than half a mile in size or more, with millions of smaller objects tumbling in space.

Asteroid 2018 LA was first discovered by the NASA-funded Catalina Sky Survey operated by the University of Arizona, the agency said. NASA linked to the video in its statement, and the publisher said on YouTube the video is from his father’s South African farm.

NASA relies on a patchwork of observers to track what it calls near-Earth asteroids, the agency explained in a video.

Constantly scanning telescopes capture images of the sky and movement through photos over time triggers a comparison of known objects in a database.

If the object is unknown, the agency will review the object and expedite the analysis if experts determine it will streak close to the Earth. Astronomers from NASA, other space agencies and even amateur enthusiasts then join in to refine the trajectory.

2018 © The Washington Post

This article was originally published by The Washington Post.

Popular Science’s Planet #9

 

The elusive Planet Nine might be responsible for this asteroid’s bizarre orbit

Something’s got the Kuiper belt’s rocks off, and there’s a scramble to find it.

Planet Nine

An artist’s interpretation of Planet Nine.

Kevin Gill via Flickr

For a few years now, the astronomy world has been hard at work searching for a ninth planet of the solar system (no, not Pluto, it’s time to move on). There’s evidence of something massive hanging around in the outer reaches of the solar system—10 times more massive than Earth, big enough to gravitationally warp the orbits of smaller objects in its vicinity, 10 to 20 times farther away than Pluto. And yet it apparently continues to hide in plain sight, eluding our best efforts to observe it directly. If a planet orbits the sun and nobody’s there to see it, is it even real?

The latest tantalizing bit of evidence to back up Planet Nine’s existence is an asteroid called 2015 BP519, first discovered three years ago in the vast reaches of the Kuiper belt (the region of the solar system beyond Neptune). We now know the asteroid possesses a bizarre elliptical orbit that suggests something gigantic is pulling at the little bugger as it tries to make its journey around the sun.

“I’m pretty excited about the new object,” says Caltech astronomer Mike Brown, one of the first people to characterize Planet Nine, who was not involved with the study. “It is the predicted link between the very distant elongated orbits that we’ve known about and the much closer tilted orbits that we’ve seen.”

In a new paper led by Juliette Becker, a graduate student at the University of Michigan, a group of researchers outline the discovery of BP519 through the Dark Energy Survey, an international collaboration that uses visible and near-infrared observations to study the expansion of the universe. It’s not exactly a typical object-hunting tool, but the DES is optimized for observing objects above the planet of the solar system—objects like BP519, which has an orbit tilted 54 degrees with respect to the solar system’s plane.

“The moment we saw its fitted orbit, we knew it was a remarkable object,” says Becker. “If the solar system is thought of as concentric rings sitting flat on a table, BP519’s orbit is another, larger oval tilted more than halfway up toward the ceiling.”

That’s where the influence of Planet Nine comes in. “Planet Nine, if it exists, could take objects that start out closer to the table and cause their orbits to change with time to eventually look like BP519’s orbit,” says Becker.

Besides its unique orbital inclination, we also know the object is perhaps the size of a dwarf planet, and its distance from the sun is about 450 times farther than Earth’s.

While other explanations could explain the asteroid’s strange orbit, such as a rogue star flying by the neighborhood, or a scattering effect created by a giant planet migration, none of those theories seem to fit the bill as well as Planet Nine. “At the moment, Planet Nine seems like the most likely culprit to me,” says Becker.

In addition, “this is the first discovery of a Kuiper belt object drawn from a population that was not already mapped out before our formulation of the Planet Nine hypothesis,” says Konstantin Batygin, a planetary scientist at Caltech who has led the investigation of Planet Nine in partnership with Brown. “Our theoretical models predict the existence of exactly this type of inclined orbit in the distant Kuiper belt, and seeing this prediction materialize into observational reality is extremely satisfying.”

Nevertheless, both Brown and Batygin emphasize the new discovery doesn’t do much in helping astronomers actually find Planet Nine. “We now know of so many objects influenced by Planet Nine, that adding a single extra one doesn’t significantly change our view,” says Brown. “Finding a few dozen more would be very helpful though!”

Nor is it certain BP519 even has anything to do with a new planet. “The only totally convincing evidence,” says Becker, “will be a direct detection of Planet Nine.” Something’s got the Kuiper belt’s rocks off, and there’s a scramble to find it.

Uranus: Smells Like Rotten Eggs And Has Temperature Of Negative 328F

(THIS ARTICLE IS COURTESY OF SPACE.COM)

 

 SPACE

If the Rotten Egg Smell Doesn’t Kill You, the Negative 200°C Temperature of Uranus Will

New research suggests the atmosphere of Uranus is largely comprised of hydrogen sulfide, which gives rotten eggs their repulsive smell.

 

PUBLISHED ON 04/25/2018
7:04 AM EDT

Uranus: Smells Like Rotten Eggs And Has Temperature Of Negative 328F

(THIS ARTICLE IS COURTESY OF SPACE.COM)

 

 SPACE

If the Rotten Egg Smell Doesn’t Kill You, the Negative 200°C Temperature of Uranus Will

New research suggests the atmosphere of Uranus is largely comprised of hydrogen sulfide, which gives rotten eggs their repulsive smell.

 

PUBLISHED ON 04/25/2018
7:04 AM EDT

New Evidence That Supermassive Black Holes Eventually Suck the Life out of Big Galaxies

(THIS ARTICLE IS COURTESY OF GIZOMDO)

 

New Evidence That Supermassive Black Holes Eventually Suck the Life out of Big Galaxies

The Centaurus A galaxy, showing the characteristic jets of gas thrown off by a supermassive black hole. (Image: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray))

At the core of each large galaxy lies a supermassive black hole with the mass of 1 million suns. New research shows that these celestial vacuum cleaners do more than just devour nearby objects—they also grow to a size that eventually suppresses a galaxy’s ability to churn out new stars, effectively rendering them sterile.

Young galaxies are absolutely bursting with bright, newly formed stars. As time passes, however, star formation eventually grinds to a halt. A new study published in Nature shows that supermassive black holes play a critical role in determining when large galaxies stop producing new stars, a process known as “quenching.”

Stars form out of cold gas, so when a galaxy runs out of cold gas it’s effectively quenched. One possible way this could happen—at least for galaxies with supermassive black holes—is that the gas that pours onto a supermassive black hole triggers the production of high-energy jets. The energy released by these jets can expel cold gas out of the galaxy, causing star formation to shut down.

At least that’s the theory. This idea has been around for quite some time, but no observational evidence existed to support the alleged correlation between supermassive black holes and star formation. The new study, led by Ignacio Martín-Navarro from the University of California Santa Cruz, now fills this gap in our knowledge.

Using data collected by the Hobby-Eberly Telescope Massive Galaxy Survey, Martín-Navarro’s team analyzed the spectra of light coming from distant galaxies. This allowed them to separate and measure the varying wavelengths of light coming from these distant objects. The scientists used this data to create a historical snapshot of a galaxy’s star formation history. They then compared this history with black holes of different masses, which resulted in some striking differences—differences that correlated with black hole mass, but not the shape, size, or other properties of black holes.

“The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes,” wrote the researchers. “The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and… cooling.”

As Martín-Navarro clarified in an accompanying statement, for galaxies with the same mass of stars, but with a different black hole mass in the center, “those galaxies with bigger black holes were quenched earlier and faster than those with smaller black holes.” This means that star formation will last longer in galaxies with smaller central black holes. “[…Accretion onto more massive black holes leads to more energetic feedback from active galactic nuclei, which would quench star formation faster,” he said.

It’s an exciting result, but there’s still lots of work to do. While the researchers managed to produce observational evidence showing that black hole mass can be connected to the quenching of star formation, they’re still unclear about the exact mechanical processes involved. As study co-author Aaron Romanowsky explained, “There are different ways a black hole can put energy out into the galaxy, and theorists have all kinds of ideas about how quenching happens, but there’s more work to be done to fit these new observations into the models.”

Our galaxy, the Milky Way, features its own super massive black hole and is not immune to this process. It is currently transitioning from star-forming mode to a passive, sterile existence. Eventually, a few billion years from now, all the stars in the Milky Way will be extinguished, and the super massive black hole at center will evaporate into nothing. It’s a grim prospect, but such is the way of the indifferent cosmos.

Found Them! 72 Unseen Galaxies Found Hiding in Plain Sight

Source: Found Them! 72 Unseen Galaxies Found Hiding in Plain Sight

Astronomers just discovered a super massive black hole from the dawn of the universe

(THIS ARTICLE IS COURTESY OF POPULAR SCIENCE)

 

Astronomers just discovered a supermassive black hole from the dawn of the universe

And it’s much bigger than we expected.

black hole and quasar

An artist’s image of a black hole with an accretion disk and a quasar shooting away from it.

Robin Dienel, courtesy of the Carnegie Institution for Science

There was a bang. A big one. It was the beginning of everything, but for several hundred million years, all was darkness. Then, lights started flickering to life, stars and gases and galaxies all coming online.

One of the brightest lights during that dawn had a dark and hungry hole at its heart. More massive than 800 million suns, the black hole existed just 690 million years after the Big Bang, when the universe was still an infant.


Article Continues Below:

How Does A Dyson Swarm Work?

By the year 3100, Earth’s skyrocketing population will need a lot of… 

Researchers, including Eduardo Bañados, reported the existence of the black hole and its accompanying bright quasar in a paper in Nature this week. The astronomers were looking for evidence of black holes in these early days of the universe, but they were still surprised at the sheer size of this one, named J1342+0928.

Black holes are points in the universe where gravity is so intense that nothing can escape. Not rocks, not gas, not even light. Near large black holes, surrounding material swirls around to form something called an accretion disk. Material in the disk spins at thousands of miles per second, heating up as it moves and slams into other bits of dusts and gas, all riding the same frantic carousel toward doom.

The material itself spins down into the black hole, never to be seen again, but its jostling releases energy that heads out into the universe in the form of immensely bright heat and light. That light made the quasar that Bañados and his co-authors were able to detect, which they used to estimate J1342+0928’s surprising mass.

Bañados says that a typical black hole, forming as a star collapses, might have the mass of 50 to 100 suns. “If you make it grow, feed it material like gas from its surroundings and let it grow for 690 million years, you wouldn’t be able to reach the size of this supermassive black hole,” Bañados says.

To figure out how this black hole could have gotten so large so quickly, observational astronomers like Bañados must team up with theoretical astronomers and astrophysicists. In the process, they’re also looking into ever-so-slightly broader questions, like the evolution of everything. “This object is so distant and so luminous that it provides a laboratory to study the early universe,” Bañados says.

Bañados has discovered about half of the most distant quasars on record, but this one—while not the most massive—is the furthest of them all. Because light takes time to travel, the more distant an object is, the earlier back in history we’re peering when we look at it. So this object comes from earlier in the universe’s lifespan than any of the others scientists have observed.

“This record is nice, but we’re not doing this for the record,” Bañados says. “This is so mature that I would be very surprised if this is the first quasar ever formed. I hope we or someone else will break this record soon.”

This particular quasar is so bright that it outshines the galaxy where it’s located—it’s 1000 times more luminous. And it’s not like that galaxy is a slouch either, even though the quasar at its heart drowns it out in both the optical and ultraviolet wavelengths of light. Fortunately, if you look at the galaxy in longer wavelengths, you can start to see some details. Bañados is a co-author on another paper that came out this week in The Astrophysical Journal Letters that focuses on the galaxy around the black hole. They the galaxy was positively choked with interstellar dust, producing somewhere around 100 new solar masses (the mass of our star) per year. Our galaxy only makes about one solar mass per year.

They were also able to detect something about the neighborhood of space around the black hole, finding that about half of the area had un-ionized hydrogen (which would have blocked out light, leading to those first few hundreds of millions of years of darkness in the universe) and half had ionized hydrogen, indicating that this black hole could have existed at the time when the universe switched from being dominated by the former to the latter.

“How this happened and when this happened have fundamental implications for the evolution of the universe later on,” Bañados says. “But we need to find and keep searching for more objects even further away and try to repeat that experiment.”

Luckily, there are now more opportunities to look into those universal origins. In 2018, Bañados and other researchers around the world will use a variety of telescopes to explore this object more thoroughly and look for others in the night sky.

“We’re a very fortunate generation,” Bañados says. “We’re the first human beings to have the technology to study and characterize in detail some of the first galaxies and black holes that formed in the universe. If that’s not fascinating, I don’t know what is.”

Stephen Hawking project detects possible signs of alien life

(THIS ARTICLE IS COURTESY OF THE NEW YORK DAILY NEWS)

 

Stephen Hawking project detects possible signs of alien life from distant galaxy

Not Released (NR)

A Stephen Hawking-led project has detected what could be signs of alien life from a galaxy 3 billion light years away from Earth.

(NASA/GETTY IMAGES)

Stephen Hawking’s Breakthrough Listen project has detected mysterious signals that could be coming from intelligent alien life.Astronomers working to identify alien civilizations picked up 15 repeated fast radio bursts (FRBs) from a dwarf galaxy 3 billion light years away from Earth.

It’s unclear if the signals, observed over a 30-minute period, emanate from black holes, rotating neutron stars, or if they represent signs of alien life.

Hawking founded the Breakthrough Listen project to investigate — and identify — signs of intelligent life in the universe. Russian internet billionaire Yuri Milner is also behind the initiative.

The 15 signals came from FRB 121102. Astronomers had previously detected radio pulses coming from the same source.

But the recent signals were observed at a higher frequency than previous signals.

Breakthrough Listen postdoctoral researcher Vishal Gajjar discovered the activity, which was reported by the Astronomer’s Telegram.

“These are the highest frequency and widest bandwith detections of bursts from FRB 121102 obtained to-date,” the report said. “These observations may indicate FRB 121102 is currently in a heightened activity state, and follow-on observations are encouraged, particularly at higher radio frequencies.”

Tags:
STEPHEN HAWKING
SPACE
SCIENCE

Toxic Compounds May Sterilize Martian Soil—Scientific America

(THIS ARTICLE IS COURTESY OF SCIENTIFIC AMERICA)

Toxic Compounds May Sterilize Martian Soil

Microbes could be killed off by perchlorates exposed to ultraviolet radiation on the planet’s surface

NASA’s Phoenix Mars lander detected perchlorates in the Martian arctic’s ice-rich soil in 2008. Credit: NASA, JPL-Caltech, University of Arizona, Texas A&M University

The Martian surface may be even less hospitable to life than scientists had thought.

Ultraviolet (UV) radiation streaming from the sun “activates” chlorine compounds in the Red Planet’s soil, turning them into potent microbe-killers, a new study suggests.

These compounds, known as perchlorates, seem to be widespread in the Martian dirt; several NASA missions have detected them at a variety of locations. Perchlorates have some characteristics that would appear to boost the Red Planet’s habitability. They drastically lower the freezing point of water, for example, and they offer a potential energy source for microorganisms, scientists have said. [The Search for Life on Mars: A Photo Timeline]

But the new study, by Jennifer Wadsworth and Charles Cockell — both of the U.K. Centre for Astrobiology at the University of Edinburgh in Scotland —  paints perchlorates in a different light. The researchers exposed the bacterium Bacillus subtilis, a common spacecraft contaminant, to perchlorates and UV radiation at levels similar to those found at and near the Martian surface. (Because Mars’ atmosphere is just 1 percent as thick as that of Earth, UV fluxes are much higher on the Red Planet than on Earth.)

The bacterial cells lost viability within minutes in Mars-like conditions, the researchers found. And the results were even more dramatic when Wadsworth and Cockell added iron oxides and hydrogen peroxide, two other common components of Martian regolith, to the mix: Over the course of 60 seconds, the combination of irradiated perchlorates, iron oxides and hydrogen peroxide boosted the B. subtilis death rate by a factor of 10.8 compared to cells exposed to UV radiation alone, the researchers found.

“These data show that the combined effects of at least three components of the Martian surface, activated by surface photochemistry, render the present-day surface more uninhabitable than previously thought and demonstrate the low probability of survival of biological contaminants released from robotic and human exploration missions,” Wadsworth and Cockell wrote in the study, which was published online today (July 6) in the journal Scientific Reports. (Scientists already knew about perchlorates’ toxic potential, but it usually takes high temperatures to “activate” the compounds, Wadsworth told Space.com.)

It’s unclear how deep this inferred “uninhabitable zone” goes on Mars, because the precise mechanism behind the cell-killing action isn’t understood, Wadsworth said.

“If you’re looking for life, you have to additionally keep the ionizing radiation in mind that can penetrate the top layers of soil, so I’d suggest digging at least a few meters into the ground to ensure the levels of radiation would be relatively low,” she told Space.com via email.

The European/Russian ExoMars rover, which is scheduled to launch toward the Red Planet in 2020 on a mission to search for signs for life, will feature a drill that can reach a maximum depth of 6.5 feet (2 m).

There’s an important caveat to the new results, however: B. subtilis is a garden-variety microbe, not an “extremophile” adapted to survive in harsh conditions, the researchers said.

“It’s not out of the question that hardier life forms would find a way to survive” at or near the Martian surface, Wadsworth told Space.com. “It’s important we still take all the precautions we can to not contaminate Mars.”

EDITOR’S RECOMMENDATIONS

Copyright 2017 SPACE.com, a Purch company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Penny Wilson Writes

A Bit of Me in Every Key Stroke

Short Prose

short prose, fiction, poetry

A Word Of Substance

"Object Relations"

Prospero's Island

Usurpation, murderous plots, a beautiful island...

AIWA! NO! Then press~~

Crimson Tazvinzwa: "We Read. We Discuss. We Review.."

blackornamental's Blog

The greatest WordPress.com site in all the land!

Further Approximation to Original Thought

An Experimental World View Blog

Un paso a la vez

Temas variados

%d bloggers like this: